If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+64x-204=0
a = 4; b = 64; c = -204;
Δ = b2-4ac
Δ = 642-4·4·(-204)
Δ = 7360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7360}=\sqrt{64*115}=\sqrt{64}*\sqrt{115}=8\sqrt{115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{115}}{2*4}=\frac{-64-8\sqrt{115}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{115}}{2*4}=\frac{-64+8\sqrt{115}}{8} $
| 1.32*10^-5=4x^2+x | | 60/42=6x-2/4x | | 2-4x-(x+1)=-12 | | -2x-6=-11 | | (7x+35)-(4x-1)=8 | | 3x-5=2(x=3) | | 2/7x+1/2x=3/4x+2 | | 30=-2x+1 | | 19x+26x=x | | -2(3n-4)-8(n-2)=-n-n | | 2-4x-(x+1)=-9 | | 3.s=6 | | 6x+7=-6x+115 | | 2-4x-(x+1)=-10 | | 2-k=2-2k | | A+b=35 | | 3(2x-1)^2+19(2x-1)+16=0 | | -13x-19=11-7x | | 4p²-p=0 | | v=1/3(3.14)32^2(27) | | (3^2x)(3^x-1)=9 | | 4x+3x=-2(7x-7)-5(-1+4x) | | 30u=630 | | 45+.5x=2x | | 2X2+4y2-16=0 | | m7=3 | | 18d=927 | | (3x+32)=90 | | 2x+500=x+500+300 | | 1-3x+2x=9-2x | | (4x+1)-4=136 | | 7x+4=6x-10 |